אנליזה סיסמית תפקודית מתקדמת עבור מלון Bat-Yam Beach
|
|
- Κέφαλος Ηλιόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 אנליזה סיסמית תפקודית מתקדמת עבור מלון Bat-Yam Beach מרצה: אלכס שוחט בשת"פ עם זיו סולומון, שמואל )בוקשפן מהנדסים( ובעזרתם של: דניאל דובוא, עימאד נאסירי, ירון אופיר )ירון אופיר מהנדסים( ירון אופיר מהנדסים בע"מ
2 תוכן עניינים: המטרה: להראות שתכן מתקדם מאפשר הבנה טובה יותר של ההתנהגות המבנית ואת מנגנוני התפתחות הכשל בו. הבנה זאת מגבירה את הביטחון של המתכנן בפתרון המבני ומגדילה את בטיחות המבנה. תיאור הגיאומטריה ונתונים: עבור מלון בת ים ביץ. הגדרת עומסים: ספקטרום עבור בת ים ביץ + ע.שימושי + ע.קבוע אנליזה מודלית לפי ת"י 413 ולפי :EC8 בירור היחס בין התקן הישראלי לאירופאי. אנליזת דחיפה לא-ליניארית :Non-Linear Pushover Analysis הערכת הדרישה הסיסמית ומציאת מקדם הקטנת כוח מציאותי למבנה אנליזה לא-ליניארית בזמן לאימות התכן :Time History Analysis הערכה ריאליסטית של תגובת המבנה, הזזות, כוחות הגזירה )מקדם הגברה מציאותי לגזירה(, ושיעור הסיבוב הפלסטי ברכיבים הנושאים העיקריים
3 תאור המבנה: גובה מבנה כ~ 150 מטר. )46 קומות מעל פני הקרקע( שטח קומה טיפוסית כ~ 847 מ"ר עובי תקרה בקומה טיפוסית 18 ס"מ שתי קומות מרתף ממפלס עד 7.00 קומת לובי בגובה ממפלס עד ביסוס משולב רפסודה+כלונסאות 3
4 ~30 m קומה טיפוסית לפני עדכון בהמשך לאנליזה מערכת ההקשחה האופקית מתקבלת באמצעות קירות )גזירה וכפיפה(, אקסצנטרי וגרעין גרעין 1 2. המבנה הוא בעל חתך פתוח. העמודים בהיקף לא תורמים למערכת ההקשחה האופקית ומשמשים לנשיאת עומסי הכבידה. )הם כמובן ממודלים ונבדקת תגובתם עבור ההזזה מרכזית מסה C מרכז קשיחות בר.אדמה ) ~34 m 4
5 אנליזה סטטית אנליזה מודלית עומס סיסמי: מבנה בטון ספקטרום עבור תקופת חזרה 475 שנה, ריסון 5% עבור אזור בת- םי [g] 0.089=Z SDS SD1 Tb=0.11 sec Tc=0.69 sec TL=4 sec 5
6 עומס גרביטציוני+שימושי: טבלת עומסים )קבוע נוסף + שימושי( במפלסי המבנה עומס קבוע נוסף )ק"נ/מ"ר( עומס שימושי )ק"נ/מ"ר( מקדם עומס לשילוב סיסמי שימושי סה"כ עומס נוסף בקומה )ק"נ/מ"ר( מפלס 7- )רפסודה( מפלסים 3.4- ו מפלסים 6.3 גג המבנה עד גג המבנה 6
7 Wtotal=66000 [ton] אנליזה מודלית: משקל המבנה: מלון עונה לקריטריון של בניין מרובה אוכלוסין לכן המקדם הוא 1.25 מקדם הקטנה בהנחה ורמת משיכות בינונית: 5 According to ASCE & EC8 עבור אנליזה סיסמית יש להפחית בקשיחות החתכים עקב סדיקה 7
8 אנליזה מודלית: Y X Y צורת תנודה עיקרית של הזזה בכיוון (T=5.21 sec.( Y X צורת תנודה עיקרית של פיתול sec.( (T=4.52 צורת תנודה עיקרית של הזזה בכיוון (T=4.77 sec.( X
9 מסקנות אנליזה מודלית לפי ת"י תוצאות האנליזה הראשונית הדגישו מספר ליקויים במערכת הנושאת של הבניין המקורי 413 גיליון תיקון מס' 3:.1.2 חתך פתוח שגורם לאקסצנטריות וריכוז מאמצים גדולים צימוד גדול בתגובה המבנית בדיון )ומו"מ(מול אדריכל סוכם על השינויים הבאים: הוספת קורה ותקרה כל מפלס רביעי ובכך ליצור גרעין מרכזי אחד להפחתת הפיתול הגדלת קורות עבור beams coupling שינוי עובי חלק מן הקירות. 9
10 אנליזה מודלית: סיכום תוצאות סיכום כוחות לפני הגבלות נוסחה )26( סיכום כוחות הגזירה בבסיס המבנה לאחר הכפלה במקדם חשיבות I וחלוקה ב- K Vbx= 7499 kn Vby= 6718 kn Vbx/Wtotal = 1.16% Vby/Wtotal = 1.04% סיכום כוחות לאחר הכפלה במקדם Scaling Factor נוסחה )27( המבנה הנדון נחשב למבנה מיוחד כי הוא אינו מקיים חלק מהמאפיינים של מבנה סדיר. m= 1.0 X גזירה בכיוון nx= mfh/vbx 1.92 Vbx= kn Y גזירה בכיוון ny= mfh/vby 2.14 Vby= kn 10
11 אנליזה מודלית: מקדם הגברה לכוחות הגזירה )עבור קירות( בבסיס המבנה מקדם הקטנה עבור כפיפה Keff= K/(I*ny)= wma מקדם ההגברה על כוחות גזירה 1.9 K/(I*ny*wma)= Keff/wma= מקדם הקטנה עבור גזירה בקירות 1 בוצע בדיקה גם להשפעות P-Δ וגם לאקסצנטריות 11
12 החלטה לגבי מעבר לעבודה לפי Euro Code 8 ואנליזת דחיפה לא-ליניארית: לאור אי הבהירות הקיימת כרגע בתקן הישראלי לגבי מקדמי התכן הוחלט לבצע גם אנליזות מתקדמות יותר, שתקן 413 מאפשר לבצען )סעיף 304(, אך לא מנחה בפירוט כיצד. לכן התכן בוצע לפי Euro Code 8 שעודכן בשנים האחרונות בתחום הסיסמי ונחשב לתקן מודרני הכולל אפשרות לביצוע הליכים מתקדמים. האנליזות שבוצעו: 1. אנליזה מודאלית )לינארית( לפי EC8 כרפרנס להשוואה מול 413 ולאנליזות מתקדמות. 2. תכן בעזרת אנליזת דחיפה לא-ליניארית.Non-Linear Static Pushover Analysis 3. אימות התכן ע"י אנליזה לא ליניארית בזמן Non Linear Time History אנליזות אלה מאפשרות, כפי שנראה בהמשך, הבנה יותר טובה של התנהגות המערכת המבנית ובירור מקדמי ההגברה ריאליסטיים. 12
13 שלב א'-אנליזה מודלית לפי דרישות EuroCode 8 בוצעו מספר אנליזות מודלית : 1( לפי גיאומטריה שהתקבלה מאנליזה לפי ת"י ( אנליזה עם הקטנת חתכי עמודים וקירות לגובה המבנה. משליש תחתון של גובה המבנה כלפי מעלה בוצע הקטנה הדרגתית של גודל עמודים וקירות מרכזיים מקדם חשיבות 1.25 עבור רמת משיכות בינונית DCM מקדם הגברה לכוחות גזירה: 1.5=ε מקדם הקטנת הכוח : 3.6 =q מודל לאנליזה מודלית 13
14 שלב א'-השוואת תוצאות בין אנליזה מודלית ת"י 413 וEC8 אנליזה מודלית ת"י 413 אנליזה מודלית EuroCode8 q= kn 1.73% 1.5 K=5 2 ~ kn 2.22% 1.9 מקדם הקטנה מקדם הגדלה Scaling Factor מקדם חשיבות כוח גזירה כולל אחוז ממשקל המבנה מקדם ההגברה על כוחות הגזירה הזזה מקס' בראש המבנה 50 ס"מ 14
15 שלב ב'- אנליזת דחיפה לא ליניארית לפי (2004) 8 EC 15
16 Non-Linear Static (Pushover) אנליזת דחיפה לא ליניארית לפי יורו קוד 8 Analysis אנליזת דחיפה מותרת לתכן כאלטרנטיבה לאנליזה מודלית 16
17 אנליזת דחיפה לא ליניארית לפי (2004) EC8 אנליזת דחיפה: הפעלת עומסים אופקיים הולכים וגדלים )העמסה אינקרמנטלית( עד לרמה בה מתקבלת כניעה במרבית רכיבי המערכת המתנגדים לכוחות אופקיים. נקודת התפקוד: נקודת שיווי משקל בין דרישה )ספקטרום( לתסבולת המבנה )עקום אליה המבנה צריך להגיע ללא כשל. יתרונות השיטה: 1. הערכת התגובה הלא-ליניארית והתסבולת האופקית של המבנה )הערכת מקדם הקטנת כוח K ריאלי(. 2. הערכת הדרישה הסיסמית מהמבנה: כוחות הגזירה, מומנטים, הזזות, הסטות אופקיות, סיבובים פלסטיים קבלת סדר הופעת הפרקים הפלסטיים. דחיפה( תחום התכן 17 עקום דחיפה טיפוסי ורמות תפקוד פילוג העומסים האופקיים לגובה המבנה
18 שלב ב'- אנליזה לא ליניארית: מודל חישובי מודל לא ליניארי של המבנה מידול קירות משולבים באמצעות אלמנטים קווים כמקובל בספרות המקצועית (Courtesy of Paulay & Priestley 1992) תכן סיסמי משיך לפי עקרונות שיטת Capacity Design מערכות משיכות של קירות הקשחה משולבים Walls( )Ductile Coupled הינה מערכת יעילה לקבלת כוחות אופקיים בזכות קשיחותה ויכולת בזבוז אנרגיה גבוהה ע"י הפרקים הפלסטיים בבסיסי הקירות ובקורות הקשר. פרקים פלסטיים איור מתאר: מכניזם פלסטי רצוי לקבלת מערכת משיכה לבזבוז אנרגיה 18
19 קיר קיר קיר קיר קיר קיר שלב ב'-מודל לא ליניארי )הגדרת חתכים(-קירות כל נקודה )צבע שחור( מייצגת אלמנט אותו אלמנט )קורה, קיר או עמוד( Joint המרכז תכונות לא ליניאריות של כל נקודה מוגדרת באמצעות 6 עקומים לא ליניאריים קורה קורה קורה קורה מומנט פיתול מומנט מומנט גזירה גזירה צירי קורה קורה קורה קורה קורה קורה כל עמודה מיוצגת באמצעות עקום בי-ליניארי קורה קורה קורה קורה קטע קיר עם Joints 19
20 Moment [kn-m] Moment [kn-m] שלב ב'-מודל לא ליניארי )חישוב חתכים ותכונות לא ליניאריות(-קירות יש חשיבות באיתור יחסי ההטרחה בכל רכיב לצורך תכנון נכון. חישוב משיכות החתך חישוב החתך נניח מנת זיון אורכי בחתך 1%= M-Phi עקמומית rad/m 1. מאמץ לחיצה מנורמל בחתך קטן מ 0.4 הוכח כמאוד חשוב ברעידת צילה. זו נקודת זכות לתקן הארופאי והישראלי שבה היא קיימת, בעייתי בתקינה האמריקאית והציילינית 1. בדיקת משיכות החתך ועדכונה 2. כליאת החתך להגדלת המשיכות Priestley 1996, Paulay & Priestley 1992 תכן חתך לפי EC8 חתך נשלט גזירה-לא תקין!!! יחסי הטרחה נכונים עבור כל רכיב חישוב משיכות החתך חישוב החתך חתך נשלט כפיפה - תקין!! עקמומית rad/m 20
21 שלב ב'-מודל לא ליניארי )חישוב כליאה( במקרה שלנו: חישוב כליאה נעשה לפי ספרות מקצועית כי יורוקוד לא מאפשר הבנת מנגנון הכליאה. זיון הכליאה עומד בדרישות מינימום ומקס של יורוקוד , ,000.0 N response- -40, , , , , , , , , , , , , , ,000.0 V response- קירוב בי לינארי עיבור גזירה , , , , , , , , ,000.0 M response- קירוב בי -M לינארי זווית 10,
22 שלב ב'-מידול ותכן קירות משולבים וקורות קשר Coupling Beams ההתנהגות הלא-ליניארית של קורות הקשר מודלה ע"י מפרקים פלסטיים בכפיפה בעל התנהגות בי-ליניארית עם חוזק המתחשב בזיון האלכסוני. Moment Hinge Model* Hinge Nonlinear Behavior לאחר פתרון בודקים התפתחות מכניזם פלסטי בנקודת תפקוד וסיבובים פלסטיים, ומתקנים זיון במידת הצורך מאנליזת דחיפה ראשונית או מאנליזה מודלית מקבלים הטרחות גזירה ואיתם מחשבים הזיון האלכסוני הדרוש According to ASCE *John Wales
23 Sa-spectral acceleration (m/sec^2) שלב ב'- תוצאות אנליזת הדחיפה הלא-ליניארית: חישוב נקודת תפקוד לפי (2004) EC8 לצורך הערכת הדרישה הסיסמית Sa-Sd Capacity curve Bilinear curve Performance point נקודת שיווי משקל בין עקום תאוצה-הזזה )עקום עומס( לבין עקום תסבולת של המבנה T*=4.52 sec Sd-spectral displacement (m) 23
24 שלב ב'-עקום דחיפה 100%X+30%Y אנליזה מודלית לפני מקדם הקטנה מקדם הקטנה אמיתי רק 1.4 Qact=1.4 Q=3.6 אנליזה מודלית לאחר מקדם הקטנה 24
25 שלב ב'-עקום דחיפה 30%X+100%Y Qact=1.5 מקדם הקטנה אמיתי רק 1.5 Q=3.6 25
26 שלב ב'-התפתחות פרקים/מכניזם פלסטיים צריך לבדוק הזזות וסיבובים פלסטיים 0.2F 0.4F 0.6F 0.8F תפקוד F -נקודת 1.2F
27 שלב ב'-בדיקת שיעור הסיבוב הפלסטי בקורות הקשר )נבדק גם לקירות( תחום המותר עבור LS עד 1.8% קורת קשר coupling beam קורת קשר coupling beam
28 שלב ג'- אנליזה לא ליניארית בזמן לפי (2004) 8 EC 28
29 Spectral Displacement (m) Horizontal Ground Acceleration (g) Spectral acceleration, g שלב ג'- Analysis Time History בוצעה אנליזה לא-ליניארית בזמן עבור רעידת אדמה מלאכותית שנוצרה בעזרת תוכנת,SIMQKE מותאמת לספקטרום התאוצה והזזה לפי דרישות (2004).EC8 5% damping ratio and 475 years of return period Design Acceleration Spectrum (413, 2009) Artificial Ground Motion Record Time History of a Horizontal Generated Artificial Earthquake Record (PGA=0.14g) Natural vibration period Tn (sec.) % damping ratio and 475 years of return period Design Displacement Spectrum (413, 2009) Artificial Ground Motion Record Time (sec.) Natural vibration period Tn (sec.) 29
30 שלב ג'- Analysis Time History הזזה בראש המבנה הגברה בהזזה בעיקר עקב צורות תנודה גבוהות בהתחשב בתגובה הלא-ליניארית סרטון 30
31 שלב ג'-גרף גזירה בתחתית הקיר )דוגמה( מודים גבוהים משפיעים בקומות עליונות עקום כוח גזירה בתחתית הקיר 555/80 הגברה ביחס למודלית הגברה ביחס לדחיפה הגברה בעיקר עקב צורות תנודה גבוהות בהתחשב בתגובה הלא- ליניארית 31 t=9.56 [sec] t=12.3 [sec] פרקים פלסטיים t=14.7 [sec]
32 טבלת סיכום תוצאות מאנליזות Time History PushOver Modal (413) Total Base Shear 29,106 16,959 כוח גזירה כולל 14,368 Reduction Factor מקדם הפחתה 5 Amplification Factor 1.4 -דחיפה 3 -אנליזה מודלית 1.5 מקדם הגברה
33 סיכום ומסקנות: תכן מתקדם: תכן מתקדם מגביר את הבטיחות והביטחון במבנה ע"י מציאת מקדמי הקטנה והגברה אמיתיים. אנליזה מתקדמת מאפשרת לנו להבין יותר טוב את סדר הכשלים שצפויים להתפתח ולתכנן חתכים בצורה אופטימאלית יותר. אנליזה מתקדמת מאפשרת הקטנת היקף הביסוס. במקרה שלנו בוצעה אנליזה )Soil Structure Interaction) SSI
34 תודה רבה! YARON OFFIR ENGINEERS LTD Gutwirth Science Park, Technion Campus, Haifa 32000, Israel Tel: Fax: Mobil:
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר
תכן עמידות מבנים ברעידת אדמה
SI 413 June 1995 Amendment No. 5 December 2013 תקן ישראלי ת"י 314 יוני 6994 גיליון תיקון מס' 5 טבת התשע"ד דצמבר 4360 תכן עמידות מבנים ברעידת אדמה Design provisions for earthquake resistance of structures
HLM H L M טבלת עומסים לעוגן בודד (בטון ב- 30 )
HM HM מאפיינים טכנולוגיה: עוגן נקבה סוג פלדה העוגן נקבה: Cold Formed steel D62 סוג פלדה הבורג :. Steel f uk = 0 N/mm 2 ; f yk = 6 N/mm 2 גלוון: 5µ Zn HM Bolt HM Eye European Approval ETA01/00 ETAG001 option
3-9 - a < x < a, a < x < a
1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e
- 1 - מבוא: l 2 מעוות: מאמץ: σzy σ. xx xy xz. = yx yy yz. σ σ σ σ מתקיים: υ υ. σ σ σ. i i. i i. i i. i 1
מבוא: דף נוסחאות למבחן סוף סמסטר מכניקת המוצקים 084504) ( - - ε (חסר יחידות) Δl l F Kgf m מאמץ: מעוות: xz yz yx zx zy xz yx yz. מתקיים: zx zy zz טנזור המאמצים: לכן טנזור המאמצים הינו מטריצה סימטרית. υ
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
7. רדיסטריבוציה של מומנטים*
7. רדיסטריבוציה של מומנטים* 7.1 מבוא תכן אלמנטים מבטון מזוין מושתת על ההנחה הבסיסית שתסבולת כל חתך לא תיפחת מההטרחה המירבית אשר תתפתח באותו החתך תחת פעולת הכוחות החיצוניים בהביא בחשבון מצבי העמיסה המסוכנים.
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p
= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(
א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π
ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (
תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע
סיכום- בעיות מינימוםמקסימום - שאלון 806
סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME
הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי
םיצוחל םיטנמלא.18 יללכ 18.1
18. אלמנטים לחוצים 18.1 כללי אלמנטים לחוצים הם אלמנטים לאורכם פועל כוח לחיצה. אלה בדרך כלל עמודים אך לא תמיד. באלמנטים שונים, בכפוף לתנאי הסמיכה שלהם יכולים להתעורר כוחות לחיצה גדולים (למשל כוח לחיצה עקב
תרגיל 13 משפטי רול ולגראנז הערות
Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון
normally open (no) normally closed (nc) depletion mode depletion and enhancement mode enhancement mode n-type p-type n-type p-type n-type p-type
33 3.4 מודל ליניארי ומעגל תמורה לטרנזיסטורי אפקט שדה ישנם שני סוגים של טרנזיסטורי אפקט השדה: א ב, (ormally מבוסס על שיטת המיחסו( oe JFT (ormally oe המבוסס על שיטת המיחסור MOFT ו- MOFT המבוסס על שיטת העשרה
שאלה 1 V AB פתרון AB 30 R3 20 R
תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A
דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם
תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא
PDF created with pdffactory trial version
הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח
דף נוסחאות - דינמיקה של גוף קשיח Rigid Body Dynamics
דף נוסחאות - דינמיקה של גוף קשיח Rigid Body Dynamics r = r (t + t) r (t) v t 0 = r t a t 0 = v t v B = v B v A A העתק )Displacement( שינוי של ווקטור R בזמן t ווקטור מהירות קווית של חלקיק )Velocity( ווקטור
תשובות לשאלות בפרק ד
תשובות לשאלות בפרק ד עמוד 91: ( היבט מיקרוסקופי ) בהתחלה היו בכלי מולקולות של מגיבים בלבד, אשר התנגשו וכך נוצרו מולקולות מסוג חדש, מולקולות תוצר. קיום של מולקולות תוצר מאפשר התרחשות של תגובה הפוכה, בה
Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.
Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.
מהדרוש להבנת ותכן קורות כבר מצוי בפרק על טבלות מתוחות בכיוון אחד פרק 12. ציור 13.1
13. קורות* 13.1 כללי קורה היא אלמנט קווי מימדי החתך שלו ) הגובה h והרוחב b כאשר החתך מלבני) קטנים ביחס למימד השלישי המיפתח L (ציור 13.1a), אלא אם כן מדובר בקורה גבוהה בה היחס L/h נמוך. במקרה זה חלות הוראות
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
16. חדירה* ציור 16.1 * פרק זה מעודכן ל נובמבר 2010
16. חדירה* כללי 16.1 חדירה היא גזירה היקפית בטבלה הנשענת על עמוד או גזירה היקפית בטבלת יסוד עליה נשען עמוד. זו היא גזירה סביב עומס מרוכז בודד. צורת הכשל דומה לחדירה של עמוד דרך טבלה כפי שניראה בציור 16.1a
EMC by Design Proprietary
ערן פליישר אייל רוטברט הנדסה וניהול בע"מ eranf@rotbart-eng.com 13.3.15 בית ספר אלחריזי הגבלת החשיפה לקרינה של שדה מגנטי תכנון מיגון הקרינה תוכן העניינים כלליותכולה... 2 1. נתונים... 3 2. נתונימיקוםומידות...
5.1 כללי. A s והלחוץ A s
5. חישוב חתך בפעולת כוח אקסצנטרי 5.1 כללי כפיפה טהורה הינה מקרה פרטי של פעולת כוח אקסצנטרי על חתך. הסכימה הסטטית המורכבת במבנים בהנדסה אזרחית מביאה לכך שבמיעוט המקרים קיימת כפיפה טהורה ובמרביתם הכפיפה
הרצאות בבקרה לא-לינארית (046196) (actuator) מפעיל בקר. plant הבאות:
הרצאות בבקרה לא-לינארית (696) מאת פרופ' נחום שימקין טכניון הפקולטה להנדסת חשמל חורף תשס"ה ניתוח מערכות משוב חלק בב': כזכור, המשוב מהווה מרכיב חשוב במערכות טבעיות והנדסיות רבות, וכלי בסיסי בתכן מערכות הבקרה.
יחידתלימודבנושא " שלמשולשישרזווית" http://www.hebrewkhan.org/lesson/533 מעט היסטוריה הפרושהמילולישלהמילה "" הוא "מדידתמשולשים". משולש "טריגונו" מיוונית - "מטריה"- מיוונית - מדידה, ענףשלהמתמטיקההעוסק, ביןהיתר,
חוזק חומרים/תורת החוזק...3 מאמץ מתיחה...3
הנדסת בניין תוכן עניינים חוזק חומרים/תורת החוזק...3 מאמץ מתיחה...3 מאמץ מאמץ מאמץ מאמץ לחיצה...3 גזירה...4 פיתול...4 כפיפה...5 עומסים במבנה... 6 חומרי שלד...8 בטון...8 פלדה...9 חקירת קרקע...11 ביסוס...13
תרגול מס' 6 פתרון מערכת משוואות ליניארית
אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית
(ספר לימוד שאלון )
- 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:
תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע"א, מיום 23/5/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע"א, מיום 3/5/011 שאלון: 635860 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. שאלה מספר 1 נתון: 1. ממקום A יצאה מכונית א' וכעבור מכונית ב'. 1 שעה
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
T 1. T 3 x T 3 בזווית, N ( ) ( ) ( ) התלוי. N mg שמאלה (כיוון
קיץ 006 f T א. כיוון שמשקל גדול יותר של m יוביל בסופו של דבר למתיחות גדולה יותר בצידה הימני, m עלינו להביט על המצב בו פועל כוח החיכוך המקס', ז"א של : m הכוחות על הגוף במנוחה (ז"א התמדה), לכן בכל ציר הכוחות
ושל (השטח המקווקו בציור) . g(x) = 4 2x. ו- t x = g(x) f(x) dx
פרק 9: חשבון דיפרנציאלי ואינטגרלי O 9 ושל בציור שלפניך מתוארים גרפים של הפרבולה f() = נמצאת על הנקודה המלבן CD מקיים: הישר = 6 C ו- D נמצאות הפרבולה, הנקודה נמצאת על הישר, הנקודות ( t > ) OD = t נתון:
dspace זווית - Y מחשב מנוע ואנקודר כרטיס ו- driver
ת : 1 ניסוי - מנוע מצביע מטרת הניסוי מטרת הניסוי היא לתרגל את הנושאים הבאים: זיהוי פונקציות תמסורת של מנועים חשמליים, בנית חוגי בקרה עבור מערכת המופעלת ע"י מנוע חשמלי עם דרישות כגון רוחב סרט, עודפי הגבר
יווקיינ לש תוביציה ןוירטירק
יציבות מגבר שרת הוא מגבר משוב. בכל מערכת משוב קיימת בעיית יציבות מהבחינה הדינמית (ולא מבחינה נקודת העבודה). חשוב לוודא שהמגבר יציב על-מנת שלא יהיו נדנודים. קריטריון היציבות של נייקוויסט: נתונה נערכת המשוב
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים
TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה
התעייפות: ערך היחס המקסימלי פקטורים: עמיסה: גודל: A Se = Cload Csize Csurf Ctemp Creliab S.
- - תהליך האופטימיזיציה:.. יש לבודד את הפרמטרים שמשתנים בתוך הפונקציה הנתונה-מציאת היחס... בניית טבלא עפ"י היחס שנמצא..3. מציאת החומר המקיים את היחס בעל הערך הגבוה/נמוך ביותר שנמצא (עפ"י הדרישה) ערך היחס
11. גזירה באלמנטים מבטון מזוין
11. גזירה באלמנטים מבטון מזוין 11.1 כללי כוחות הגזירה באלמנטים קונסטרוקטיביים הינם פועל יוצא מהיותם של אלה מוטרחים בכפיפה (למעט חדירה ופיתול). שילוב בין שני החומרים בטון ופלדה בצורת מוטות זיון, יוצר את
33 = 16 2 נקודות. נקודות. נקודות. נקודות נקודות.
1 מבחן מתכונת מס ' משך הבחינה: שלוש שעות וחצי. מבנה ה ומפתח הערכה: ב זה שלושה פרקים. פרק א': אלגברה והסתברות: נקודות. נקודות. נקודות. נקודות. 1 33 = 16 3 3 פרק ב': גיאומטריה וטריגונומטריה במישור: 1 33
שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 ס"מ = CD.
טריגונומטריה במישור 5 יח"ל טריגונומטריה במישור 5 יח"ל 010 שאלונים 006 ו- 806 10 השאלות 1- מתאימות למיקוד קיץ = β ( = ) שאלה 1 במשולש שווה-שוקיים הוכח את הזהות נתון: sin β = sinβ cosβ r r שאלה נתון מעגל
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
פתרון 4. a = Δv Δt = = 2.5 m s 10 0 = 25. y = y v = 15.33m s = 40 2 = 20 m s. v = = 30m x = t. x = x 0.
בוחן לדוגמא בפיזיקה - פתרון חומר עזר: מחשבון ודף נוסחאות מצורף זמן הבחינה: שלוש שעות יש להקפיד על כתיבת יחידות חלק א יש לבחור 5 מתוך 6 השאלות 1. רכב נוסע במהירות. 5 m s לפתע הנהג לוחץ על דוושת הבלם והרכב
x = r m r f y = r i r f
דירוג קרנות נאמנות - מדד אלפא מול מדד שארפ. )נספחים( נספח א': חישוב מדד אלפא. מדד אלפא לדירוג קרנות נאמנות מוגדר באמצעות המשוואה הבאה: כאשר: (1) r i r f = + β * (r m - r f ) r i r f β - התשואה החודשית
רשימת משפטים והגדרות
רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F
12. טבלות מתוחות בכיוון אחד*
12. טבלות מתוחות בכיוון אחד* 12.1 כללי טבלה היא אלמנט מישורי אשר מידה אחת שלו h העובי (בכיוון ( z קטנה בצורה משמעותית משתי המידות האחרות (כיוונים x ו ( y ראה ציור. 12.1a הטבלה מקשית כאשר היא יצוקה במלוא
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 שאלון: 316, 035806 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 E נתון: 1 רוכב אופניים רכב מעיר A לעיר B
f ( x, y) 1 5y axy x xy ye dxdy לדוגמה: axy + + = a ay e 3 2 a e a y ( ) במישור. xy ואז dxdy למישור.xy שבסיסם dxdy וגבהם y) f( x, איור 25.
( + 5 ) 5. אנטגרלים כפולים., f ( המוגדרת במלבן הבא במישור (,) (ראה באיור ). נתונה פונקציה ( β α f(, ) נגדיר את הסמל הבא dd e dd 5 + e ( ) β β איור α 5. α 5 + + = e d d = 5 ( ) e + = e e β α β α f (, )
אוסף שאלות מס. 3 פתרונות
אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,
הרצאה 7 טרנזיסטור ביפולרי BJT
הרצאה 7 טרנזיסטור ביפולרי JT תוכן עניינים: 1. טרנזיסטור ביפולרי :JT מבנה, זרם, תחומי הפעולה..2 מודל: S MOLL (אברסמול). 3. תחומי הפעולה של הטרנזיסטור..1 טרנזיסטור ביפולרי.JT מבנה: PNP NPN P N N P P N PNP
מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. לדוגמה:בסרטוט שלפappleיכם EC אלכסוןבמצולע.
גיאומטריה מצולעים מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שappleי קדקודים שאיappleם סמוכים זה לזה. לדוגמה:בסרטוט שלפappleיכם
תרגול פעולות מומצאות 3
תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה
רשימת בעיות בסיבוכיות
ב) ב) רשימת בעיות בסיבוכיות כל בעיה מופיעה במחלקה הגדולה ביותר שידוע בוודאות שהיא נמצאת בה, אלא אם כן מצוין אחרת. כמובן שבעיות ב- L נמצאות גם ב- וב- SACE למשל, אבל אם תכתבו את זה כתשובה במבחן לא תקבלו
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b
תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1
גודל המאמץ תלוי ב- P )הכוח החיצוני( הגדול יותר. גם הדפורמציה תהיה גדולה יותר.
הרצאה מספר 1 הנדסת בניין 10/10/01 ספרים: תורת הבניה ש. ציפר )הוצאת אורט( מושגי יסוד בתורת החוזק התנהגות של חלקי מבנה תחת השפעת כוחות חיצוניים שפועלים על המבנה. כתוצאה של הכוחות יש תופעות של מאמץ ודפורמציה.
c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )
הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה
פתרון מבחן פיזיקה 5 יח"ל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (100 נקודות)
שאלה מספר 1 פתרון מבחן פיזיקה 5 יח"ל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (1 נקודות) על פי כלל יד ימין מדובר בפרוטון: האצבעות מחוץ לדף בכיוון השדה המגנטי, כף היד ימינה בכיוון הכוח ולכן האגודל
דינמיקה כוחות. N = kg m s 2 מתאפסת.
דינמיקה כאשר אנו מנתחים תנועה של גוף במושגים של מיקום, מהירות ותאוצה כפי שעשינו עד כה, אנו מדלגים על ניתוח הכוחות הפועלים על הגוף. כוחות אלו ומסתו של הגוף הם אשר קובעים את תאוצתו. על מנת לקבל קשר בין הכוחות
קיום ויחידות פתרונות למשוואות דיפרנציאליות
קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית
א. חוקיות תשובות 1. א( קבוצות ספורט ב( עצים ג( שמות של בנות ד( אותיות שיש להן אות סופית ; ה( מדינות ערביות. 2. א( שמעון פרס חיים הרצוג. ב( לא.
א. חוקיות. א( 1; ב( ; ג( השמיני; ד( ; ה( האיבר a שווה לפי - מיקומו בסדרה ; ו( = ;a ז( 9 = a ;.6 א( דוגמה: = a. +.7 א( =,1 + = 6 ;1 + ג( את המספר האחרון: הוא זה שמשתנה מתרגיל לתרגיל. 8. ב( 1 7 a, המספר
גמישויות. x p Δ p x נקודתית. 1,1
גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
תוכתורמ ןויז תותשרו תוטומ ןוגיעו תוקבדיה.10
10. הידבקות ועיגון מוטות ורשתות זיון מרותכות 10.1 כללי עצם קיום הבטון המזוין מבוסס על שיתוף פעולה בין שני החומרים בטון ופלדה, ברם, לבטון אנחנו חופשיים לעצב כל צורה (אנחנו שולטים בצורת המבנה במרחב) ואילו
שאלה. משקולת שמסתה 2kg = m תלויה במנוחה על חוט שאורכו l, = 1m המחובר לתקרה. )ראו תרשים(
שאלה משקולת שמסתה 2kg = תלויה במנוחה על חוט שאורכו l, = 1 המחובר לתקר )ראו תרשים( מצאו את הכח T סטודנט הזיז את המשקולת בזווית = 10 α מן האנך )נקודה A בתרשים( והרפה, המסה חזרה לנקודה הנמוכה ביותר )נקודה
התפלגות χ: Analyze. Non parametric test
מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06
פולינומים אורתוגונליים
פולינומים אורתוגונליים מרצה: פרופ' זינובי גרינשפון סיכום: אלון צ'רני הקורס ניתן בסמסטר אביב 03, בר אילן פולינומים אורתוגונאליים תוכן עניינים תאריך 3.3.3 הרצאה מרחב מכפלה פנימית (הגדרה, תכונות, דוגמאות)
SI 466 part 1 June Amendment No. 4. The Standards Institution of Israel. Concrete code: General principles. November 2016
SI 466 part 1 June 2003 Amendment No. 4 November 2016 תקן ישראלי ת"י 466 חלק 1 טבת התשס"ח יוני 2003 גיליון תיקון מס' 4 חשוון התשע"ז נובמבר 2016 חוקת הבטון: עקרונות כלליים Concrete code: General principles
CONSULTING Engineering Calculation Sheet
E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00
אלקטרומגנטיות אנליטית תירגול #13 יחסות פרטית
אלקטרומגנטיות אנליטית תירגול #13 יחסות פרטית הקונבנציה המקובלת הינה שמסמנים אינדקסים לורנצים (4 מימדיים) באמצעות אותיות יווניות, כלומר µ, ν = 0, 1, 2, 3 ואילו אינדקסים אוקלידים באמצעות אותיות אנגליות i,
סדרות - תרגילים הכנה לבגרות 5 יח"ל
סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר
אלגברה לינארית (1) - פתרון תרגיל 11
אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6
"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי
הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת
תבריגים, ברגים ואומים להידוק
תבריגים, ברגים ואומים להידוק מבוא לפרק ברגים משמשים ליצירת קשר נייח או נייד בין חלקים שונים. ישנם שלושה סוגים: 1) ברגי הידוק תפקידם לחבר ולהדק חלקים. 2) ברגי איטום- ברגים עם הידוק מוקדם לצורך אטימה 3)
מערכות בקרה 1 סיכום ( ) ( ) 1 *מסמך זה הינו סיכום הקורס, שברובו מכיל חומר מהתרגולים עם תוספות, אך אינו מסמך רשמי של הקורס.
מערכות בקרה 1 סיכום *מסמך זה הינו סיכום הקורס, שברובו מכיל חומר מהתרגולים עם תוספות, אך אינו מסמך רשמי של הקורס. f1 f1... f x1 x n u f f A=.. B= x x= xe u x= xe u= ue f u ue n f = n f... x1 x n u g h h
ב ה צ ל ח ה! /המשך מעבר לדף/
בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"א, מועד ב מועד הבחינה: משרד החינוך 035804 מספר השאלון: דפי נוסחאות ל 4 יחידות לימוד נספח: מתמטיקה 4 יחידות לימוד שאלון ראשון תכנית ניסוי )שאלון
פרק 8: עצים. .(Tree) במשפטים הגדרה: גרף ללא מעגלים נקרא יער. דוגמה 8.1: תרגילים: הקודקודים 2 ו- 6 בדוגמה הוא ).
מבוא לפרק: : עצים.(ree) עצים הם גרפים חסרי מעגלים. כך, כיוון פרק זה הוא מעין הפוך לשני הפרקים הקודמים. עץ יסומן לרב על ידי במשפטים 8.1-8.3 נפתח חלק מתכונותיו, ובהמשך נדון בהיבטים שונים של "עץ פורש" של
69163) C [M] nm 50, 268 M cm
א ב ג סמסטר אביב, תשע"א 11) פיתרון מס' 4: תרגיל 69163 69163) פיסיקלית א' כימיה בליעה והעברה של אור חוק בר-למבר) כללי.1 נתון כי הסטודנט מדד את ההעברה דרך דוגמת החלבון בתוך תא של 1 ס"מ. גרף של העברה T) כתלות
אלגברה ליניארית 1 א' פתרון 2
אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק
קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.
קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא
את כיוון המהירות. A, B
קיץ 6 AB, B A א. וקטור שינוי המהירות (בקטע מ A ל B), עפ"י ההגדרה, הוא: (עפ"י הסימונים שבתרשים המהירות בנקודה A, למשל, היא ). נמצא וקטור זה, באופן גרפי, ונזכור כי אין משמעות למיקום הוקטורים:. (הערה עבור
צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים
מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה
Vcc. Bead uF 0.1uF 0.1uF
ריבוי קבלים תוצאות בדיקה מאת: קרלוס גררו. מחלקת בדיקות EMC 1. ריבוי קבלים תוצאות בדיקה: לקחנו מעגל HLXC ובדקנו את סינון המתח על רכיב. HLX מעגל הסינון בנוי משלוש קבלים של, 0.1uF כל קבל מחובר לארבע פיני
ניהול סיכום הרבון ""ר ותמיכה באחזקה אחזקה MTBF = 1. t = i i MTTR זמינות BTBM. i i
הקשר בין אחזקה לבין אמינות: דד// אחזקה כדי למצוא משך פעולה בטרם יש צורך לבצע אחזקה במערכת בעלת אמינות או MTBF באמינות נדרשת (בין ל- ) יש לבצע את החישוב הבא: ln r( ln r( MTBF MTBF s MTTR s ( T ) זמן ממוצע
חפסנ םיגתוממ םיבציימ יראיניל בציי. מ א גתוממ בצי. ימ ב
נספח מייצבים ממותגים מסווגים את מעגלי הייצוב לשני סוגים: א. מייצב ליניארי. ב. מייצב ממותג. א. מייצב ליניארי מייצב ליניארי הינו למעשה מגבר שכניסתו היא מתח DC וכל מה שנכון לגבי מגבר נכון גם לגבי המייצב הנ"ל.
ערה: הגזירה היא חלקית, כלומר גוזרים את התלות המפורשת של G ב ξ בלבד, ולא נהוג לסמן את קצב השינוי באנרגיה החופשית של גיבס בתגובה כך: G
ה) יווי משקל ש תרגול כימי מידת התקדמות תגובה ; קצב שינוי באנרגיה החופשית של גיבס בתגובה ; קבוע ש"מ ;מנת ריאקציה אנרגיה חופשית של גיבס לערבוב ; עקרון לה שטלייה ; משוואת גיבס-הלמהולץ G G nrt ln n nrt lna,
הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות
הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות משואות קולמוגורוב pi, j ( t + ) = pi, j ( t)( rj ) + pi, k ( t) rk, j k j pi, j ( + t) = ( ri ) pi, j ( t) + ri, k pk, j ( t) k j P ( t)
קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד
גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.